
Experience with Process Migration in Sprite

�

Fred Douglis

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

douglis@sprite.Berkeley.EDU

Abstract

This paper reports on experience with the Sprite process migration facility. Sprite

provides transparent remote execution to support load sharing through the use of idle

workstations. Process migration is used to reclaim workstations when their owners

return. On Sun 3/75 workstations, the cost of selecting an idle host and invoking a

remote process is about 400 milliseconds. This time is substantially greater than the

cost of creating the same process locally, but it is much less than the typical execution

time of programs that are run remotely, such as compilations and text formatting.

The cost of migrating an active process is a function of the number of dirty pages it

has, the number of �le blocks that must be
ushed from the host's �le cache, and the

number of open �les it has. This time ranges from 110 milliseconds to migrate a small

process with no open �les, to several seconds to migrate a process with many dirty

pages and �le blocks and several open �les. Remote execution has been used regularly

for approximately 9 months to perform compilations in parallel. I draw conclusions

about the usefulness of remote execution for parallel compilation, and I present lessons

we learned about process migration and system building in general.

1 Introduction

By executing independent tasks in parallel on idle workstations, applications may sub-

stantially reduce turnaround time. However, the usefulness of remote execution is limited

if processes must be terminated to reclaim a workstation when its owner returns, or if

processes behave di�erently when they are run remotely. Sprite [8] provides a transparent

process migration facility to allow noninvasive access to idle workstations. An application

invokes a program remotely by performing a system call that combines migration with exec,

replacing the process's execution image with a new program on the other host. If the owner

of the remote host returns, a daemon migrates the remote process back to its own host.

The primary client of migration in Sprite is a parallel version of make (called pmake), which

uses idle hosts to perform compilations and other tasks in parallel. This paper discusses

the experience we have had with process migration, from experimenting with an initial

prototype in 1986-87 to using migration daily over the past 9 months.

�

This work was supported in part by the Defense Advanced Research Projects Agency under contract

N00039-85-C-0269 and in part by the National Science Foundation under grant ECS-8351961.

1

The next section provides some background on Sprite's process migration facility, sum-

marizing what has appeared elsewhere [2, 3]. In Section 3, I discuss the history of process

migration in Sprite, from its initial implementation to its current state. We found that

migration was much harder to get working than we had expected, and even harder to keep

working as the rest of the system evolved. Once migration was in daily use, however,

changes in the system that a�ected migration were noticed immediately and corrected.

Section 4 analyzes the performance of remote execution and process migration using

four metrics: the time to invoke a remote program, the time to migrate a process after it

has been executing at length, the execution penalty due to transparent remote execution,

and the overall speedup of application programs using remote execution to perform tasks

in parallel.

Section 5 considers the lessons we have learned from implementing and using process

migration over a period of time. From an implementation standpoint, we found that �le

system bookkeeping was the hardest aspect of process migration to get right, and we found

that transparency could be provided with low overhead as long as important operations are

location-independent (particularly interactions with the �le system). I also draw lessons

about systems in general: for example, a feature such as process migration must be used

periodically if it is to work despite changes to the system.

In Section 6, I conclude the paper and discuss current and future work.

2 Goals and Design

This section summarizes the goals and design of Sprite's process migration facility. I

de�ne some terminology used throughout the paper. I then discuss the means by which

transparency is supported during remote execution, and the mechanism for migrating active

processes.

The primary goals of process migration in Sprite are transparency and noninvasiveness.

Sprite provides transparency by making processes appear in all ways to execute on a single

host throughout their lifetimes. The host on which the process appears to execute is termed

its home, and the host on which it physically executes at any given time is its physical host .

If the process's physical host is di�erent from its home, then it is executing remotely . Sprite

provides noninvasiveness by migrating a remote process during execution if its host becomes

unavailable, leaving no residual dependencies on the remote host after migration. Finally, I

refer to the host initiating process migration as the source, and the recipient of the process

as the target .

In order to support transparent remote execution, Sprite has several relevant character-

istics:

� Shared �le system. The system has a single �le system namespace, so a �le name

refers to the same object regardless of location. (Section 3 below discusses the poor

performance of remote execution when the same name can refer to di�erent objects on

di�erent hosts.) Processes can access �les and devices on remote hosts transparently.

� Inter-process communication through the �le system. Communication with

other processes is performed using �le system objects such as pipes and pseudo-

devices [13]. Pseudo-devices are used for system services such as the X Window

System and access to the internet, for which location transparency would otherwise

2

present a problem. By using the �le system for communication with the internet

server, processes appear to internet hosts to be on a single host throughout their

lifetime; the Sprite �le system automatically forwards communication between the

internet server and a remote process as necessary.

� Location-transparent system calls. All system calls by a remote process that

depend on its location are forwarded to its home host for evaluation. Calls that

interact with remote processes, such as sending signals, are redirected from the home

to the physical host as needed.

� Transparency to the user. A remote process appears in a listing of processes on its

home and retains the same process identi�er throughout its lifetime. The parent-child

relationships between processes are maintained regardless of where they execute, with

all synchronization of exiting processes performed on the home host. Furthermore,

the home host alone is responsible for knowing the current location of all processes

that are tied to it; this host is similar to the LOCUS \origin site", which is the host

on which a process is created [9]. However, the home host in Sprite is inherited, so

children of remote processes behave as though they were created on the same host as

their parent.

Processes are migrated by encapsulating their state on the source and transferring the

state to the target via kernel-to-kernel remote procedure calls (RPC). The transfer cost is

typically dominated by the time to send the process's open �les and virtual memory to the

target. To encapsulate the state of an open �le, the kernel sends information about the �le

itself (its unique identi�er, including which server stores the �le, and state depending on

the type of the �le encapsulated) and the process's stream for the �le (e.g., the o�set into

the �le, and the mode in which the �le is accessed). File transfer is costly primarily because

of Sprite's �le system cache consistency algorithm (described in detail in [7]). Read-only

�les are cachable on multiple hosts simultaneously, and if a �le is read and written by only

one host then that host may cache the �le. However, any time a �le is open for writing

on one host while another host accesses the �le for reading or writing, the �le is cached

only by the server storing the �le. If a �le is cached by a host and then caching for the �le

is disabled, dirty blocks for the �le must be
ushed to the host storing the �le, and clean

blocks are discarded. When a process migrates, any �les it has open for writing are brie
y

open for writing simultaneously on multiple hosts, and caching of those �les is disabled.

Measurements of the cost of cache
ushing are presented below in Section 4.

To transfer a process's virtual memory, Sprite writes the process's dirty pages to a

shared �le server. The pages are retrieved from the server as the process page-faults.

By comparison, Locus, V [11], and Charlotte [1] transfer the entire address space, which

may take orders of magnitude more time than transferring the rest of the process's state.

Accent addresses the \process migration bottleneck" by transferring virtual memory in a

lazy fashion: the target of the migration retrieves memory from the source as it is referenced,

thus amortizing the cost of memory transfer over the execution of the process [14]. Although

lazy virtual memory transfer makes the act of migration faster than direct memory-to-

memory transfer, it requires that the source of a migration dedicate memory to the process

after the migration has completed. When a Sprite workstation is reclaimed, all resources

used by foreign processes are relinquished as the processes are migrated back to their home

host.

3

3 History of Implementation E�ort

The path to a usable migration facility was long and di�cult, but in retrospect was

worth the e�ort. Migration was �rst implemented in Sprite in 1986, and we were able

to perform measurements of its performance in the 1986-87 academic year. Our initial

measurements suggested obvious areas for improvement, most notably in the area of dis-

tinguishing between location-dependent and location-independent operations. The original

implementation forwarded nearly all system calls home, including calls that involved lo-

cating �les, because each host maintained a distinct pre�x table that mapped �le system

domains to servers [12]. Rather than keeping copies of the pre�x table consistent between

multiple hosts, naming was performed on the home host using its pre�x table. Forcing nam-

ing operations to be redirected via the process's home slowed down compilation benchmarks

by approximately 20%. In fact, there was no particular reason to permit the same pre�x

on di�erent hosts to refer to di�erent domains, and we solved this performance problem by

legislating the equivalence of pre�x tables among multiple hosts.

Although migration worked well enough to perform simple tests at this point, some fea-

tures were missing: certain types of �les, such as pseudo-devices, could not be encapsulated;

there was no automatic host selection, so tools such as pmake could not yet take advantage

of migration; and there was no recovery, so the failure of a host with a foreign process could

a�ect other processes (or the kernel) on the process's home as well. Using migration on a

regular basis had to await changes to �x these problems.

While we implemented additional functionality relating to process migration at the user

level, the �le system underwent major changes to add recovery after hosts reboot. The

changes to the internal state associated with each �le caused �le descriptor encapsulation

to become entirely unusable. Because migration was not yet in regular use, we were not

even aware that the changes presented a problem until we tried working with migration

again in the fall of 1987. The �le system was about to be redesigned to �x a number of

problems, including issues relating to process migration, so process migration itself was put

on hold pending the �le system changes. Those changes were completed in late spring of

1988, at which point work on process migration resumed.

Getting migration working again was di�cult, mostly due to interactions with the re-

organized �le system. Bookkeeping between �le servers and migrating processes on client

workstations proved to be extremely complicated, compared to the rest of the migration

facility. In particular, locking and updating the data structures for an open �le on multiple

hosts simultaneously provided numerous opportunities for deadlocks, race conditions, and

inconsistent reference counts.

Once the reintegration with the �le system was complete, we were able to implement

and test the other missing pieces|error recovery and host selection|and we started using

migration regularly in the fall of 1988. Regular use provided the opportunity to �nd and

correct some additional problems that did not arise with simpler test cases. More impor-

tantly, the few changes to the rest of the system that impacted process migration were

detected almost immediately and corrected.

4

4 Performance

Many more remote processes execute to completion than are evicted, so the user's view of

the system is a�ected more by the overhead of remote invocation and execution than by the

time to migrate an active process. The most important measurements for remote execution

are the time to select an idle host, the time to start a program on another host, and the

performance penalty incurred by executing remotely rather than locally. The success of

remote execution may be evaluated by the overall performance improvement from parallel

execution of actual applications on idle hosts. On the other hand, the success of eviction

depends upon the degree to which Sprite meets its goal of noninvasiveness: in practice, the

time to evict all foreign processes from a workstation is on the order of a few seconds, during

which workstation owners do not appear to notice any obvious degradation in performance.

Section 4.1 discusses remote execution, and Section 4.2 discusses eviction.

4.1 Remote Execution

To start a program remotely in Sprite, a process obtains the use of an idle host and

then performs a remote exec to invoke the remote program. Methods of selecting hosts

for distributing load, with and without process migration, have been discussed at length in

the literature (e.g., [6, 11]). Sprite uses a shared �le that contains the load average and

idle time of each host, as well as information about the number of foreign tasks currently

using the host. To �nd an idle host, a process uses a library routine to lock the shared �le,

select a host appropriate for o�oading (low load average, idle for at least �ve minutes, and

no foreign tasks currently using it), update the count of foreign tasks, and unlock the �le.

When the host is no longer needed, the �le is locked while the entry for the host is updated

again. Sprite currently takes approximately 160 milliseconds to select and release a host,

running on Sun 3/75 workstations, because all accesses to the �le require network remote

procedure calls.

State transfer for remote invocation is much like migration, except that no virtual mem-

ory is transferred. It currently takes 188 milliseconds on Sun 3/75's to fork locally, exec

a process on a remote host with the standard set of three �le descriptors (standard input,

standard output, and standard error) and no dirty �le blocks, and wait for the remote pro-

cess to exit; this compares to 86 milliseconds when the exec is performed locally. Additional

overhead from open �les and dirty �le blocks is discussed below in Section 4.2.

The total time to select an idle workstation and start a program on it compares favorably

to the cost of other remote execution facilities, such as the Digital Systems Research Center

distant process (dp) facility [10]. Dp takes 1 second on Fire
y workstations (using multiple

MicroVAX-II processors) to start a new distant process. However, dp takes 6 seconds to

initialize before being usable, so the SRC parallel make facility does not use dp unless

enough tasks may be o�oaded to amortize the overhead. The cost in Sprite is relatively

constant, and pmake will o�oad tasks any time idle hosts are available, even if only one

task is executed at a time. By o�oading tasks whenever possible, Sprite minimizes the

e�ect of CPU-intensive operations on interactive response.

The degradation due to remote execution depends on the ratio of location-dependent

system calls to other operations, such as computation and �le I/O. Figure 1 shows the

total execution time to run several programs, listed in Table 1, both entirely locally and

entirely on a single remote host. One might expect remote execution to be slower than

5

Name Description

pmake-P recompile pmake source sequentially using pmake

ditro� run grap eqn ditro� on a 15000-word document

rcp copy a 1 Mbyte �le to another host using TCP

fork fork and wait for child, 1000 times

gettime get the time of day 10000 times

Table 1: Workload for comparisons between local and remote execution.

Time (seconds)

remotelocal

Benchmark

170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

0
gettimeforkrcpLaTeXpmake

Figure 1: Comparison between local and remote execution of programs.

6

normalized compile
compile and link

(a) Execution Times

seconds

Number of hosts used

900
800
700
600
500
400
300
200
100

0
121086421

gremlin

kernel

pmake

TeX

ideal

Number of hosts used

Speedup

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Figure 2: Performance of recompiling the Sprite �le system using a varying number of hosts.

Each graph shows the measured performance and the normalized (parallelizable) performance. The

speedup is the reciprocal of the time saved, by comparison to using a single host.

local execution due to overhead from forwarding location-dependent system calls. As may

be seen in Figure 1, however, applications such as compilations and text formatting show

little e�ect from remote execution. In fact, executing the ditro� pipeline was slightly faster

remotely than locally, due to di�erences in process scheduling while performing remote

procedure calls. The next benchmark, rcp, copies data using TCP; it communicates with a

user-level TCP server on the home node of the process performing the copy, so forwarding

TCP operations to the server on the home node causes rcp to perform about 20% more

slowly when run remotely than locally. It is also possible for a program to perform many

location-dependent system calls without much user-level computation, thereby su�ering a

large performance penalty from running remotely. The last two benchmarks, fork and

gettime, are contrived examples of this type of degradation.

The usefulness of process migration in our environment may be demonstrated by the

performance of the primary application that uses migration, namely pmake. Figure 2 shows

the total elapsed time to recompile and relink the Sprite �le system using a varying number

of machines in parallel, and the speedup obtained from using idle hosts. The benchmark

consists of 39 independent compilations, followed by loading the resulting object �les into

a single �le. Each migration is performed at the level of a Make�le command (i.e., a single

compilation). A new host is requested for each Make�le command and returned to the pool

of available hosts when the command is complete. Figure 2(a) includes two curves, showing

the measured elapsed times and the same times with �xed overhead removed: starting

pmake and determining out-of-date dependencies takes about 26 seconds, and loading the

object �les into a single image takes 17 seconds. Figure 2(b) shows the relative improvement,

for both the actual elapsed time and the portion of the compilation that could be executed

in parallel. For example, using two hosts was about twice as fast as using one host, while

using ten hosts was 5.5 times as fast overall as a single host. Using ten hosts showed a

7-fold improvement for the portion of the compilations that could be parallelized.

Figure 2(b) demonstrates that bene�ts of using a small number of hosts in parallel

adequately compensate for the combined overhead of host selection, migration, and remote

7

execution. The number of hosts that may be e�ectively used depends upon the relative

speeds of the �le server and the hosts performing the compilation. In this benchmark, the

speedup was linear for small degrees of parallelism, but with 10 hosts compiling in parallel,

the marginal improvement was small and the �le server CPU was in use 90% of the time.

4.2 Eviction

The time to evict a process depends upon the number of dirty pages it has, the number

of open �les it has, and the number of dirty �le blocks that must be
ushed. Each dirty

8 Kbyte page takes approximately 14 milliseconds to be transferred over the network to

memory on the shared backing store (plus additional time if the server's cache is full and

data must be written to disk). Sprite takes about 14 milliseconds to transfer the descriptor

for each open �le, and 7 milliseconds to
ush each dirty 4 Kbyte �le block to memory on a

�le server. The total time (in milliseconds) to migrate a long-running process on Sun 3/75

workstations is approximated by the following formula:

time to migrate = 110 + 14s+ 7b+ 14f

s = number of dirty 8 Kbyte pages

b = number of dirty 4 Kbyte �le blocks

f = number of open �les

For example, to migrate a 1 Mbyte process with 50 dirty pages, 20 dirty �le blocks, and

4 open �les, Sprite would take 1.0 seconds. If the entire 1 Mbyte address space were dirty,

migration would take 2.1 seconds.

5 Lessons

As of this writing, process migration has been in regular use in Sprite for approximately

9 months. We have had the opportunity to reach some conclusions regarding process mi-

gration and systems in general:

1. Distributed bookkeeping is di�cult.

2. Insulating migration from the rest of the system is di�cult.

3. Keeping the right number of idle hosts busy is di�cult.

4. Hiding remote execution simpli�es applications.

5. Global naming simpli�es transparency dramatically.

6. Migration is expensive, to be used only as a last resort.

7. Above all, \use it or lose it."

8

Distributed bookkeeping is di�cult

File system bookkeeping was by far the hardest part of the remote execution facility

to implement. Because Sprite �le servers maintain state about open �les, the server must

update its references when a stream to a �le changes hosts. The o�set with a stream may

be accessed by multiple hosts as a result of migration, so the server maintains state for

each stream (including the o�set) as well as each �le. Streams and �les have reference

counts associated with them, with one reference per host that accesses the stream or �le,

but di�erent types of �les use reference counts in slightly di�erent ways. When a descriptor

migrates, the reference count changes depending on what other references to the object

exist and on the type of the �le. Implementing the code to encapsulate and deencapsulate

�le descriptors, therefore, required intimate knowledge of the internal implementation of

the �le system and the state associated with each �le.

Insulating migration is di�cult

Sprite is not alone in �nding that process migration tends to impact the rest of the system

and vice-versa. Theimer refers to migration facilities as being \fragile": in an environment

in which the kernel is often modi�ed, migration can break unless everyone modifying the

kernel keeps the migration facility in step with other kernel changes [11]. Finkel and Artsy,

on the other hand, report that they were able to keep migration su�ciently modular to

keep changes to migration from breaking other parts of the kernel and changes elsewhere

in the kernel from breaking migration [5].

Although �le encapsulation proved to be a thorn in the side of process migration for

some time, migration has evolved to be generally orthogonal to the rest of the system.

Many kernel modules in Sprite maintain state on behalf of each process. Originally, to

encapsulate the state of a process, the process migration facility called a predetermined

set of encapsulation procedures, one per module, and each module's portion of the process

state was transferred in a separate RPC. When a new module was added to the system,

migration would break temporarily unless the state of the new module were encapsulated.

We therefore changed migration to use a set of \callbacks" into each module to encapsulate

its own portion of a process's state. The migration facility on the source requests the size

of the encapsulated state of each module, allocates a bu�er to hold the collective state,

makes the callbacks to encapsulate the state, and transfers the state in a single RPC to the

target. New modules may be added to the system by adding an entry to the callback table;

changes to existing modules may be performed without a�ecting the migration facility itself,

by updating the module-speci�c encapsulation routine whenever the format of the process

state changes.

Separating the functionality of migration on a per-module basis proved to have a useful

side-e�ect: implementing process migration on a new architecture required only that a

small number of machine-dependent state encapsulation routines be rewritten. It took

only about half a day to implement migration on the Decstation 3100, given the existing

implementation for Sun workstations.

Keeping idle hosts busy

Pmake performs unquestionably well when performing a small number of independent

tasks, but large tasks present some problems. On the one hand, the server's CPU is a

9

bottleneck if too many hosts are used simultaneously. On the other, pmake sometimes has

trouble using more than a single host. While we can't do much about the server except to

get faster and more plentiful CPU's, getting pmake to do more in parallel could be bene�cial.

As an example, the Sprite kernel is stored hierarchically, with each module having its own

Make�le and a single Make�le at the top level of the source tree. If pmake is invoked at the

top level with a high degree of parallelism, permitting it to invoke several pmake processes

on idle hosts, then those pmakes must be careful not to use much parallelism or they will

saturate the server. If they are invoked with low parallelism, then a large module will slow

down the entire compilation when it is performed sequentially after the other modules are

completed. Currently, only one recursive pmake is ever performed at a time, so the child

pmake can use a high degree of parallelism. However, when the child hits a synchronization

point, such as loading all the object �les in a module into a single image, only one host is

used.

Ideally, we would like to be able to build the kernel in parallel with a single pmake

controlling the degree of parallelism. One module could be compiled in parallel as one or

more modules were completing their linking phase. The problem of independent modules is

most likely an artifact of the way we chose to structure the source hierarchy before parallel

compilation was available, and we have learned our lesson.

Hiding remote execution

If changing a process's location can change the e�ects of its execution, then users must

take special care to use remote execution only when they know a priori that a program

is location-independent. For example, the V System preemptable remote execution facility

is restricted to applications that execute \only operations whose output is independent of

the location at which they are executed" [11]. Although compilations and text formatting

are location-independent, many other programs are not: for example, what if rcp could

not run remotely, and a user invoked rcp from within a Make�le? In general, any program

that one can invoke from pmake should be capable of executing remotely and being evicted

when necessary. Sprite only restricts processes that map kernel memory into their address

space, and processes that are pseudo-device servers, such as the X Window System display

manager.

To the users of applications such as pmake, remote execution is invisible. The application

merely appears to execute much faster than one would expect it to on a single host. If a

set of processes is evicted from another host, they immediately start executing on the home

host, perhaps with some performance degradation due to sharing the host with other active

processes. We hope to implement a mechanism by which processes may be automatically

re-migrated to another idle host if they are evicted, but eviction happens so infrequently

that the lack of automatic re-migration does not seem to present a problem.

To a user reclaiming his or her workstation, eviction is invisible as well|or it would be

if the daemon evicting processes did not announce the eviction in the system log. We found

that messages informing the user when eviction takes place promote goodwill, because users

can see that their performance is not impacted as a result of foreign processes.

10

Global naming is a must

When process migration was �rst designed, each Sprite host was a distinct system with

its own �le system namespace and its own process identi�ers. The simplest method of guar-

anteeing location transparency was to forward nearly all system calls home, but performance

su�ered signi�cantly. Over time, Sprite shifted toward making most system calls location-

independent: �le naming operations go directly to the server for a �le system domain, since

�le names mean the same across multiple hosts; and process identi�ers include the process's

home host, so a remote process may send a signal using the standard signalling mechanism

on its physical host. By reducing the amount of forwarding required to support remote

processes, we were able to improve the performance of remote execution while simplifying

it substantially.

Migration is expensive

Our experience with the relative costs of remote invocation and migration corroborate

the results of Eager, et al., who used a theoretical model and simulation to compare mi-

gratory and nonmigratory load sharing. They concluded that migrating processes for load

sharing performance does not generally yield signi�cant improvement over policies with

only remote invocation, and they suggested that \costlier but simpler" migration may be

appropriate if migration is done primarily for purposes other than load sharing (such as

permitting workstation owners to reclaim their hosts) [4].

Remote invocation in Sprite is inexpensive enough to provide performance improvements

for all but extremely short-lived processes, assuming that the local host is already highly

utilized. Migrating active processes, on the other hand, is often measured in seconds rather

than milliseconds. The disparity between migrating new processes and processes with many

dirty pages and �le blocks suggests that migration is unlikely to be useful for dynamic load

balancing. As a last resort to guarantee the response time to the owner of a workstation,

however, eviction has proved an appropriate use for migration.

Use it or lose it!

Our single greatest mistake when implementing process migration was to let it sit idle

while the rest of the system evolved. We did not have the manpower at the time to add the

features described in Section 3, but we could have run simple test cases on a regular basis

to ensure that problems would be apparent shortly after being introduced to the system.

If we had known quickly that the changes to implement �le system recovery had a�ected

migration, the recovery support could presumably have been modi�ed in the process of

�xing other problems with it. Instead, we were not aware of a problem until well after the

changes had become \carved in stone". The changes to support recovery, which involved

several data structures that had been designed without taking the possibility of migration

into account, would have required too much e�ort to �x|given that the entire �le system

was to be rewritten. Instead, when the �le system was redesigned, we paid careful attention

to the e�ects of migration and implemented special functionality to handle migration. This

functionality could and should have been incorporated into the system at a much earlier

point, given that it was ultimately necessary.

Since migration has been in general use, there have been several occasions when changes

elsewhere in the kernel caused problems for migration. Because migration is used frequently

11

for compilations and other tasks, in each case we quickly observed that migration had been

a�ected. By catching the problems quickly, we were able to correct them relatively easily.

6 Conclusions and Future Work

Some time ago, shortly before the �le system was to be reimplemented, we had a lengthy

discussion about the future of process migration in Sprite. The consensus at the time

was that migration was probably a mistake: it was too di�cult to implement, and the

performance of a single workstation was su�cient for our needs. However, we believed that

the marginal cost to put migration into general use was small enough to justify �nishing

the implementation and giving migration a chance to prove itself.

In retrospect, I may safely say that our initial lack of faith was misplaced. Process

migration has evolved from a toy prototype to a mature, extremely useful facility. Users are

thankful not only for the signi�cant performance improvement they see when using other

hosts, but for the minimal impact other users have on their own workstations.

Our present work with process migration may be divided into three categories: basic

support; extensions; and measurement and analysis. Migration is currently usable only

on Sun 2, Sun 3, and Decstation 3100 workstations, and only between two machines of

the same architecture. We plan to port migration to Sun 4 workstations, and if possible,

provide the ability to perform remote execs between machines of di�erent types. The ability

to perform heterogeneous remote execs, along the lines of the LOCUS rexec system call [9],

could considerably expand the pool of idle hosts available to a single program. We would

also like to add automatic remigration after eviction to keep eviction from degrading the

performance of the home host.

Finally, we intend to instrument the process migration and host selection facilities to

evaluate more aspects of the system, such as migration overhead, host availability, and

system bottlenecks. Preliminary measurements of the rates of remote execution and eviction

suggest that eviction in practice is rare (perhaps one eviction per 50 remote executions)

and takes well under a second on Sun 3/75's for typical compilations. Initial measurements

of host usage indicate that about one-third of our workstations are available for migration

during the day, on average, and over the course of a weekend closer to two-thirds are

available. Server CPU utilization is the most likely bottleneck that would a�ect overall

speedup from parallel execution, but we must await faster servers before we can obtain

useful measurements of our new client workstations: for example, a Sun 3/180 �le server

was 50% utilized servicing requests from two Decstation 3100 clients compiling in parallel.

Access to the shared �le containing host availability may also prove to be a bottleneck, and

we are exploring alternative methods for host selection that might scale better with the size

and speed of the system.

Acknowledgements

Peter Danzig, John Hartman, Mendel Rosenblum, Mark Sullivan, and Brent Welch provided

valuable comments on early drafts of this paper. John Ousterhout has been instrumental in

the design of the process migration facility. Michael Nelson and Brent Welch implemented

�le descriptor encapsulation and provided debugging assistance. Finally, I thank the referees

12

for their recommendations, which helped to improve the clarity and organization of this

paper.

References

[1] Y. Artsy and R. Finkel. Simplicity, e�ciency, and functionality in designing a process

migration facility. In The 2nd Israel Conference on Computer Systems, May 1987.

[2] F. Douglis and J. Ousterhout. Process migration in the Sprite operating system. In

Proceedings of the 7th International Conference on Distributed Computing Systems,

pages 18{25, Berlin, West Germany, September 1987. IEEE.

[3] F. Douglis and J. Ousterhout. Process migration in Sprite: A status report. IEEE

Computer Society Technical Committee on Operating Systems Newsletter, 3(1):8{10,

Winter 1989.

[4] D. L. Eager, E. D. Lazowska, and J. Zahorjan. The limited performance bene�ts of

migrating active processes for load sharing. In ACM SIGMETRICS 1988, May 1988.

[5] R. Finkel and Y. Artsy. The process migration mechanism of Charlotte. IEEE Com-

puter Society Technical Committee on Operating Systems Newsletter, 3(1):11{14, Win-

ter 1989.

[6] P. E. Krueger. Distributed Scheduling for a Changing Environment. PhD thesis, Uni-

versity of Wisconsin, Madison, Wisconsin, June 1988. Computer Sciences Technical

Report #780.

[7] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite network �le system.

ACM Transactions on Computer Systems, 6(1):134{154, February 1988.

[8] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite network

operating system. IEEE Computer, 21(2):23{36, February 1988.

[9] G. J. Popek and B. J. Walker, editors. The LOCUS Distributed System Architecture.

Computer Systems Series. The MIT Press, 1985.

[10] E. Roberts and J. Ellis. parmake and dp: Experience with a distributed, parallel imple-

mentation of make. In Proceedings from the Second Workshop on Large-Grained Par-

allelism. Software Engineering Institute, Carnegie-Mellon University, November 1987.

Report CMU/SEI-87-SR-5.

[11] M. Theimer. Preemptable Remote Execution Facilities for Loosely-Coupled Distributed

Systems. PhD thesis, Stanford University, 1986.

[12] B. B. Welch and J. K. Ousterhout. Pre�x tables: A simple mechanism for locating �les

in a distributed �lesystem. In Proc. of the 6th International Conference on Distributed

Computing Systems, pages 184{189, Boston, Mass., May 1986. IEEE.

[13] B. B. Welch and J. K. Ousterhout. Pseudo devices: User-level extensions to the Sprite

�le system. In USENIX 1988 Summer Conference, pages 37{49, San Francisco, CA,

June 1988.

13

[14] E. Zayas. Attacking the process migration bottleneck. In Proceedings of the Eleventh

ACM Symposium on Operating Systems Principles, pages 13{22, Austin, TX, Novem-

ber 1987.

14

